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1. Introduction

One fundamental obstacle in the holographic approach[2] to Yang-Mills theory is the en-

tanglement of pure YM dynamics with the dynamics of the Kaluza-Klein sectors that arise

from compactificaton of the dual 10D geometry to 4 dimensions[3]. Generically, the su-

pergravity approximation becomes invalid in the limit where the KK sector becomes very

massive hence decouples from the pure YM dynamics. Thus, one should go beyond the

supergravity approximation and study the full string theory on the dual 10D backgrounds.

As these backgrounds generically involve RR fields, this is a highly non-trivial problem.

One example of this phenomenon is the Maldacena-Núñez geometry(MN) [4]. The field

theory is constructed by wrapping N D5 branes on the non-trivial two-cycle of the resolved

conifold in such a way to preserve N = 1 supersymmetry in the resulting 4D Minkowski

space. Upon reduction on S2, the theory in 4D becomes SU(N) N = 1 SYM theory with

its massless vector multiplet coupled to an infinite tower of massive vector and massive
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chiral-multiplets.1 The dual 10 D geometry involves a non-trivial three-cycle inside the

CY 3-fold transverse to the Minkowski space. In this dual picture, the masses of the KK

modes are inversely proportional to the volume of S3. One can try to decouple them in the

IR by shrinking this volume by adjusting the value of the dilaton at the origin. However,

in this regime the radius of curvature becomes small and the supergravity approximation

fails. As a result, the energy scale of the KK-dynamics and the SYM dynamics (e.g. typical

mass of a glueball) is at the same order.

A new conjecture on the gauge-gravity correspondence was put forward by the recent

work of Lunin and Maldacena [6]. The authors employed an SL(3, R) transformation in

order to generate new IIB backgrounds from an original one that involves a torus isometry.

The transformation changes the volume of the torus and introduces other changes on the

various other fields in the background. According to their conjecture, the transformation

introduces certain phases or non-local deformations in the Lagrangian of the original dual

field theory. Employing this idea, they discovered the gravity dual of the β deformed N = 4

SYM[7]. Further literature on this duality can be found in [8] and some applications of the

Lunin-Maldacena conjecture to other backgrounds is in [1] and [9].

Relevance of the Lunin-Maldacena conjecture to the aforementioned KK-mixing prob-

lem was pointed out in [1], where a non-singular one-parameter subgroup of SL(3, R) with

a real parameter γ was applied to the MN background. This results in a new background

of IIB that involves a complicated metric, a non-trivial dilaton, NS form and various RR-

forms. Henceforth we shall denote the background obtained in [1] as MNγ . The details of

this background are presented in section 2 and appendix A. According to the prescription

of Lunin and Maldacena, the deformation only affects the particular fields on the D5’s

which are charged under the torus isometry: These fields acquire dipole moments that are

proportional to γ [10]. It is observed in [1] that these charged fields become precisely the

KK vector and hyper multiplets upon reduction on S2, and that, one obtains 4D N = 1

SYM that is coupled to a KK sector whose interactions among themselves are altered by

the deformation parameter γ. It is a local field theory in 4D. Most importantly, the pure

SYM sector is left intact under the deformation. Various checks of this idea have been

made in [1]. In particular, gravity calculations show that the new theory confines with

the same string tension, and that the NSVZ β-function and ΘY M of N = 1 SYM are the

same as obtained from the MN background [11]. Thus, the quantities that are inherent to

N = 1 SYM are independent of γ. On the other hand, the quantities that are inherent

to the KK-sector, such as the masses of the KK modes are shown to transform under the

deformation.

The general conclusions of [1] are as follows:

• The MNγ background provides a continuous set of new UV completions of the dual

field theory that flows to N = 1 SYM in the far IR,

• The γ deformation increases the masses of the KK modes, hence help decoupling

them from the pure SYM sector,2 and more importantly,

1A recent study of the classical spectrum is in [5].
2It is unclear how useful this is in practice, because in the supergravity approximation the parameter γ
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• The parameter γ serves as a marker that marks the KK-dependent “non-universal”

features of the dual field theory, therefore helps identifying in the gravity description,

the universal features of N = 1 SYM theory in the IR.

The effects of the dipole deformations on the KK-modes from a field theory viewpoint

is very recently discussed in [12]. Further literature that focused on the relevance of the

Lunin-Maldacena conjecture for the KK-mixing problem can be found in [13].

In this paper, we further investigate the third highlighted feature above. We provide

an illustration of this idea by constructing new quantities from the MNγ background that

depend and do not depend on γ, as follows. We consider the Penrose limit of the back-

ground that focuses on a null geodesic in the IR. This results in a pp-wave, that is the

geometry seen by strings moving very fast along the equator of the S3 at the origin. This

limit was previously studied by Gimon et al. in [14] in case of the original MN background.

They have found an exactly solvable pp-wave whose light-cone Hamiltonian is conjectured

to be dual to the non-relativistic Hamiltonian that describes the dynamics of what the

authors called the “annulons”. These objects are long and massive gauge-invariant op-

erators built out of the KK-fields in the geometry and they carry large U(1) charge J

(dual to the angular momentum along the geodesic). The 8 transverse directions of the

MN pp-wave[14] are the three flat directions that correspond to the 3 spatial directions of

M4 where the KK-hadrons can move, two massive directions of mass m0/3 and two other

massive directions of mass m0 where m0 is the typical glueball mass. There is also another

“accidentally” massless direction that is believed to be an artifact of the Penrose limit and

has no relevance for the dual field theory physics. Further literature on the “annulons” is

in refs.[15].

We review the MN pp-wave geometry in section 3.1 and obtain the generalization of

their construction to the MNγ geometry in the sections 3.2–3.4. This generalization proved

technically hard both because the 10D MNγ metric is much more complicated than the

original MN metric and because there are more fields present in the background. We

show that, in order to obtain a non-trivial pp-wave one should also rescale the deformation

parameter as (this is similar to the pp-wave constructed in [6]),

γ → 0, J → ∞, γJ = γ̃ = const. (1.1)

We work out the Penrose limit of the metric in section 3.2 and obtain the limits of the NS

form and the various RR-forms in sections 3.3 and 3.4. In particular, we show that the

deformation parameter in the pp-wave limit can alternatively be thought as the value of

the axion in the geometry:

χ =
γ

4
. (1.2)

As the light-cone Hamiltonian of this pp-wave is conjectured to describe the dynamics

of the hadrons that are built out of the KK-modes in the dual field theory [14], one expects

to see that the geometry depends non-trivially on the dipole moment γ. We show that this

is restricted to obey γR2 << 1 where R >> 1 is the radius of curvature.
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is indeed the case: The masses of the massive directions shift by,

M2 → M2 +
γ̃2

4
, (1.3)

with respect to the pp-wave of the original MN geometry.

The pp-wave is quadratic, hence exactly solvable. In the sections 4.1 and 4.2 respec-

tively, we compute the spectrum of bosonic and fermionic string excitations in the light-cone

gauge and find that, generically, the spectrum looks as follows,

wn =
√

(n + aγ̃)2 + bM2, (1.4)

where a and b are coefficients that vary in different sectors of the spectrum. We note

that (1.4) is very similar to the pp-wave spectrum found in [16] and [6].

We continue our investigation of the MNγ pp-wave, by studying the thermal properties

of strings in this background. The thermal partition function of single-string excitations

in the maximally-symmetric pp-wave background [17] has been studied in [18]. It was

shown that the partition function becomes ill-defined at a Hagedorn temperature which

varies according to the mass parameter. Similarly, the UV asymptotics of the MN pp-wave

of [14] was studied in [19].

In section 6, we compute the thermal partition function of single-strings in our geome-

try and in section 7 we derive the Hagedorn temperature. Quite surprisingly, this temper-

ature turns out to be independent of the deformation parameter, although the partition

function exhibits non-trivial dependence on γ̃. Thus, according to our general discussion

above, the Hagedorn temperature may serve as a non-trivial “universal” quantity, that is

relevant for the pure SYM dynamics. A discussion of this and further points follow in the

last section. Three appendices detail our computations.

2. The MNγ background

The background of [1] is conjectured to be dual to N = 1 SYM with a new infinite family

of UV completions parametrized by γ ∈ R. The metric of [1] can be put in the following

simpler and useful form (in the string frame):

ds2 = ds2
0 + ds2

γ . (2.1)

The first term is the original Maldacena-Núñez metric[4],

ds2
0 = eφ

{

dx2
1,3 +

1

m2
0

(

dr2 + e2h ( dθ2 + sin2 θdϕ2 ) +
1

4
(wi − Ai)2

)

}

, (2.2)

where φ is the dilaton in the MN background (appendix A). The parameter that appears

in the metric is the typical glueball mass, m2
0 = (α′gsN)−1. The gauge fields Ai determines

the fibration of the S2 on the S3 and wi are the left invariant SU(2) one-forms (for details,

see appendix A).
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The second part of (2.1) is a five dimensional metric on the angular variables in the

geometry:

ds2
γ =

(

eφ

4m2
0

)3
γ2

1 + γ2F 2
dΩ2

5(r, θ, θ̃, ψ). (2.3)

The explicit forms of F and dΩ5 are presented in appendix A.

Note that this form of the metric in (2.1) is useful because it clearly isolates the gamma-

dependent part in the geometry. It also involves many simplifications with respect to the

original form given in [1]. The parameter γ in the metric only appears as in (2.3).

Apart from the metric, there is a non-trivial dilaton, axion and various forms in the

geometry[1]. The dilaton and the axion are given by,

eφγ =
eφ

√

1 + γ2F 2
, χ = − γ

4m2
0

g, (2.4)

where the function g(r, θ, θ̃, ψ) is defined in (A.6).

The original MN solution is supported by a 3-form RR flux F (3) = dC
(2)
0 on the non-

trivial S3 in the geometry. An expression for C
(2)
0 is given in the appendix A. After the γ

deformation it gets deformed into,

C(2)
γ = C

(2)
0 − 1

4m2
0

γ2 F 2

1 + γ2F 2
g (dϕ + A1) ∧ (dϕ̃ + A2). (2.5)

The first term is the original MN flux and we define the one-forms, A1 and A2 in ap-

pendix A. Again, this form of the two-form involves many simplifications over the original

expression given in [1] 3 It also has the advantage of clearly displaying the γ dependent

piece.

There is also a four-form flux which by using the expressions in [1, appendix A] can

be put in the following form,

C(4)
γ = −C(2)

γ ∧ B(2)
γ = −C(2) ∧ B(2)

γ . (2.6)

where B
(2)
γ is the NS-NS two-form flux that is absent in the original MN background but

generated after the γ transformation in the deformed geometry. It is given as,

B(2)
γ =

γF 2

1 + γ2F 2
(dϕ + A1) ∧ (dϕ̃ + A2). (2.7)

Although the background is quite complicated, we show in the following section that

it admits a nice Penrose limit which results in a simple, quadratic pp-wave.

3. The Penrose limit

3.1 The pp-wave of the original MN background

It was argued in [14] that the dynamics of the KK-hadrons in the gauge theory is captured

by the pp-wave geometry that is obtained from the original metric by focusing on a geodesic

3There is a mistake in the original expression of C(2) in [1]. We thank C. Ahn for pointing this out.
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on the S3 at IR. Recall that the original MN metric has a non-trivial S3 at the origin and

this fact is unchanged by the γ deformation, as can be seen from (2.1) and (2.3). In this

section we first recall the Penrose limit of the original MN geometry [14] and then we apply

the same steps to the more complicated MNγ geometry. Our limit focuses on the same

geodesic as in [14], hence we shall be able to compare the resulting pp-waves in the original

and the deformed MN geometries and learn about the precise effects of the deformation on

the field theory dynamics.

The Penrose limit of an arbitrary Lorentzian space-time [20] as generalized to super-

gravity by [21] utilizes the homogeneity property of the supergravity action under constant

scalings of the metric and the various other fields in the geometry. Therefore, the best

way to keep track of the scalings of the fields in our geometry is to look at the IIB SG

Lagrangian:

L =
1

2κ2
10

e−2φ

(

−R ∗ 1 + 4dφ ∧ ∗dφ − 1

2
H3 ∧ ∗H3

)

− 1

4κ2
10

(

dχ ∧ ∗dχ + F̃3 ∧ ∗F̃3 +
1

2
F̃5 ∧ ∗F̃5

)

. (3.1)

The combinations of the forms that appear in (3.1) are defined as,

F̃3 = dC2 − χH, F̃5 = dC4 −
1

2
C2 ∧ H +

1

2
B2 ∧ F3 +

1

2
B ∧ B ∧ dχ. (3.2)

Let us now recall the pp-wave limit of the first part in (2.1), [14]. The authors of [14]

introduce a coordinate patch near a geodesic on S3 at the origin by the following change

of variables in (2.2):

~x → ~x

R
, r → m0

R
r, θ̃ → 2m0

R
v. (3.3)

The limit, then is defined by setting the value of the dilaton at origin as

eφ0 = R2, (3.4)

and taking R → ∞ in (3.3) and (3.4). However, the computation is not straightforward

because the one-forms Ai in (2.2) blow-up as R → ∞. This is because the gauge field Ai

is pure gauge at the origin:

A = −idhh−1 + O(r2), h = e−iσ1 θ
2 e−iσ3 ϕ

2 . (3.5)

Gimon et al. solve this problem by gauging away the pure gauge part of A by the following

change of variables on S3:4

g → h g, g = e−iσ3 ψ
2 e−iσ1 θ̃

2 e−iσ3 ϕ̃
2 . (3.6)

After this is done, the new gauge field A′ becomes O(r2). Therefore the limit that scales

r → 0 in (2.2) becomes well-defined. This trick amounts to finding a better parametrization

4In [14], this was done by a gauge transformation on A in the 7D picture. However we need the picture

where we view this transformation as a change of variables in the 10D.
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of the 10D solution that is suitable for the pp-wave limit in question. Calling the new

angular variables the same as the original ones, Gimon et al. then introduce a shift in the

angles to absorb various angular cross terms in the resulting metric (see [14] for details):

ϕ → ϕ − 1

6
(ψ + ϕ̃), ϕ̃ → ϕ̃ +

1

2
(ψ + ϕ̃) . (3.7)

Finally, one defines the light-cone coordinates,

x+ = x0, x− =
R2

2

(

x0 − ψ + ϕ̃

2m0

)

, (3.8)

and takes the Penrose limit, R → ∞. This results in the following linear, quantizable

pp-wave geometry[14]:

ds2
0 = −4dx+dx− + d~x2 + d~y2 + d~z2 − m2

0(dx+)2
(

z2
1 + z2

2 +
1

9
y2
2 +

1

9
y2
3

)

. (3.9)

Here ~z = (z1, z2) and ~y = (y1, y2, y3) are coordinates on R2 and R3. They are related to

the original variables in the MN geometry as follows:

y1 = r cos θ, y2 = r sin θ cos ϕ, y3 = r sin θ sin ϕ,

z1 = v cos ϕ̃, z2 = v sin ϕ̃. (3.10)

We see that there are three massless coordinates that correspond to the spatial coordinates

of the original Minkowski space, two massive coordinates with masses m2
0, two other massive

coordinates with mass 1
9m2

0 and one “accidentally” massless coordinate, y3. We have more

to say about this massless coordinate below.

Having established the steps that lead to a well-defined pp-wave metric above, one can

easily work out the limit of the 3-form in the MN geometry[14]:

C(2)
pp =

2m0

R2
x+

{

dz1 ∧ dz2 +
1

3
dy2 ∧ dy3

}

. (3.11)

We note that the scaling of various objects in the geometry with R is consistent

with (3.1): The metric (2.2) scales as R0, using (3.4) and (3.3). Thus R ∼ R0 and the first

part of (3.1) scales as R−4. Similarly, the second part of (3.1) scales as R−4, using (3.11).

Therefore the overall factor of R−4 in (3.1) can consistently be absorbed as

κ2
10 → κ2

10R
4. (3.12)

3.2 Penrose limit of the metric in MNγ

Now, we apply the same steps to the second part of the metric in (2.1). At first sight,

it seems hopeless to obtain a linear pp-wave geometry in the same limit, (3.3) as ds2
γ is

extremely non-linear. However we will show below that this first impression is wrong.

One first carries out the change of variables (3.6) in the second part of (2.1). One

needs the explicit form of the new angles in terms of the old ones. Let us denote the new

variables with bars upon them. We present the expressions that relate new angles θ, ψ and

ϕ to the old ones, θ̃, ψ and ϕ̃ in appendix B.
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In practice, one only needs the expressions for the leading order terms in the expansions

of sin θ, cos θ, sin ψ and cos ψ functions that appear in (A.6) in the variable θ̃. This is

because we will eventually take the Penrose limit R → ∞ in (3.3). We present these

expansions also in the appendix B.

Inserting these expansions given by (B.2) in (A.6) one obtains a nice result after many

simplifications: dΩ2
5 in (2.3) becomes order 1/R2 ! In detail, after the redefinitions in (3.3),

this angular piece becomes,

dΩ5 → 4m2
0

R2
v2 sin2(ψ−ϕ)(dθ−dθ)2+

4m2
0

R2

(

v2 + r2 sin2 θ
)

(dϕ+dϕ)2+O
(

1

R2

)

dψ(dψ+· · ·).
(3.13)

From this observation, it follows that one can define a non-singular pp-wave limit (3.3) also

in (2.3) if we also rescale γ such that,5

γ → 0, R → ∞, γ̃ = γR2 = fixed. (3.14)

We also note that f − g2 ∼ O(1/R2), hence the denominator of the term in front of dΩ2
5

in (2.3) becomes 1.

When one applies the change of variables in (B.2) in the metric, one should also apply

them to the one-forms dψ, dϕ̃ and dθ̃. It should now be clear that we only have to keep

the zeroth order terms:

dθ = dθ + O(1/R), dϕ = dϕ̃ + dψ − dϕ + O(1/R), dψ = O(1/R). (3.15)

In particular all the terms that multiply dψ in (3.13) go away in the limit. Another nice

surprise that follows from (3.15) is that the first term in (3.13) disappears! If this did not

happen we would get a non-linear term sin2(ψ − ϕ).

Having carried out the change of variables, we call the new angles ψ, θ and ϕ back as

ψ, θ̃ and ϕ̃. The next steps are to apply the same shift in the angles as in (3.7) define the

light-cone coordinates in (3.8) and take the limit R → ∞ in ds2
γ . These steps are simple

and one arrives at the following contribution from the second part of the metric in (2.1):

ds2
γ → − γ̃2

4m2
0

(dx+)2
(

z2
1 + z2

2 + y2
2 + y2

3

)

. (3.16)

We combine (3.9) with (3.16) and obtain our final expression:

ds2
pp =−4dx+dx−+d~x2+d~y2+d~z2−m2

0(dx+)2
((

1+
γ̄2

4

)

(z2
1 + z2

2) +

(

1

9
+

γ̄2

4

)

(y2
2 + y2

3)

)

.

(3.17)

Here we introduced the dimensionless quantity γ̄:

γ̄ =
γ̃

m2
0

. (3.18)

5One can also try γR3 = fixed but this gives exactly the original PP-wave of MN as the γ dependence

vanishes.
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We observe that the masses of the massive directions are shifted by terms O(γ̃2)

under the transformation. This is in accordance with our expectations. According to the

conjecture of [14], the pp-wave essentially carries information about the hadrons made out

of the KK-modes. If this conjecture is correct, we expect that the massive directions get

deformed in the pp-wave of the MNγ geometry. We indeed observe this in (3.17). Actually,

one has to be more careful in identifying the precise effect of the γ deformation.6 The

mass shift in one direction can be absorbed by a constant rescaling of the coordinates. It

is the change in the ratio of two massive directions, that has an invariant meaning. We

see in (3.17) that the ratio of the y2, y3 to the z1, z2 directions indeed change under this

process as,
m2

y

m2
z

=
1

9
→ 1/9 + γ̄2/4

1 + γ̄2/4
. (3.19)

Moreover, the massless directions are protected. One indeed expects no change in the

three massless directions xi as they are protected by space translation symmetries in the

original MN model and also in the γ deformed theory. However the masslessness of y1

not being lifted by the γ-deformation is disturbing. This implies that the “accidental”

symmetry that protected y1 is still there in the Penrose limit of the γ-deformed theory.

It is believed that this accidental symmetry of the MN hadrons is just a non-universal

feature of the model [14]. We also believe that the same feature in the γ-deformed theory

is also non-universal and is not expected to arise for example neither in the pp-wave limit

of the γ-deformed Klebanov-Strassler (KS) theory [22], [14, 6] or in the γ-deformed G2

model [23].

However, a more striking observation follows from (3.17): Comparison of the pp-waves

of MN and KS models led the authors of [14] identify the two massive directions z1 and

z2 —which happened to have the same mass, m2
0 both in the MN and the KS model—

as exhibiting a common feature that is expected to be inherent to the “hadron” sector

in the gravity duals of N = 1 SYM. These directions were called “universal” in [14] and

in some further literature. Here, we see that this statement should be modified. The γ-

deformed model also flows to N = 1 SYM in the far infrared, however the masses of z1

and z2 here depend on γ, hence model dependent and non-universal. Non-universality of

these directions also follow from comparison of MN and KS pp-waves to that of the G2

model [23].

3.3 Penrose limit of the NS form

The construction of the bosonic world-sheet action of the pp-wave involves the Penrose

limit of the NS-form. As we show in section 4.1, the NS form contributes non-trivially to

the frequencies of the higher string modes, n > 0.

As the computation for the metric is given in detail above, we shall only present the

final result for the NS form here:

B(2)
pp =

γ̄m0

2
(y2dy3 − y3dy2 + z2dz1 − z1dz2) ∧ dx+. (3.20)

6We are grateful to Elias Kiritsis for taking our attention to this point.
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The dimensionless parameter γ̄ is defined in (3.18). This is given in a gauge convenient

for construction of the world-sheet action. The gauge independent object is the NS-3 form

flux:

H(3)
pp = γ̄m0(dy2 ∧ dy3 − dz1 ∧ dz2) ∧ dx+. (3.21)

3.4 Penrose limits of the RR forms

In the Penrose limit (3.14), the axion becomes,

χpp =
γ̄

4

1

R2
. (3.22)

Therefore one can alternatively think of the deformation parameter γ as the expectation

value of the axion in the PP-wave geometry. We note that in the Lagrangian (3.1) and

in the equations of motion, only the combination χppR
2 appears which stays finite in the

limit. The same applies to the RR three-form below.

The limit of the RR two-form (2.5) is very easy to obtain. The pp-limit of the first term

in (2.5) was already obtained in [14]. On the other hand the second part is proportional

to the NS-form (2.7) thus we can directly use our result in the previous subsection. The

result is,

C(2)
pp =

2m0

R2
x+

{(

1 − γ̄2

8

)

dz1 ∧ dz2 +

(

1

3
+

γ̄2

8

)

dy2 ∧ dy3

}

(3.23)

or equivalently,

F (3)
pp =

2m0

R2
dx+ ∧

{(

1 − γ̄2

8

)

dz1 ∧ dz2 +

(

1

3
+

γ̄2

8

)

dy2 ∧ dy3

}

. (3.24)

The RR four-form is given by (2.6). In the limit this becomes,

C(4)
pp = −C(2)

pp ∧ B(2)
pp = 0, (3.25)

where we used (3.20) and (3.23). The fact that the four-form vanishes in the pp-wave

limit is quite a nice simplification for the spectrum of string oscillators in this geometry.

In particular, the masses of the fermionic oscillators do not acquire contribution from the

5-form. The same is true for the pp-wave [14] that follows from the Klebanov-Strassler

(KS) geometry [22].

The combinations of forms that enter the equations of motion and the supersymmetry

variation equations in IIB are F̃ (3) = F (3) − χH(3) and F̃ (5) = dC(4) − 1
2C(2) ∧ H(3) −

1
2B(2) ∧ F (3) − 1

2B ∧ B ∧ dχ. Using the above expressions we obtain,

F̃ (3) =
2m0

R2
dx+ ∧

(

dz1 ∧ dz2 +
1

3
dy2 ∧ dy3

)

, (3.26)

and

F̃ (5) = 0. (3.27)

Interestingly, F̃ (3) has exactly the same expression as the F̃ (3) of the pp-wave of the original

MN geometry [14]: the gamma deformation does not affect the three-form flux F̃ (3). This
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fact also has important implications for the fermionic string spectrum. We also note that

the combination F̃3 that appears in (3.1) comes out with a homogeneous scaling with R.

This fact makes the Penrose limit well-defined and also provides a check on our compu-

tations. One again checks that both the first and the second parts of (3.1) scale as R−4,

hence this factor can be absorbed into the redefinition (3.12).

In summary, the new pp-wave geometry is given by eqs. (3.17), (3.22), (3.21), (3.24)

and (3.27). This is a result of a long and tedious computation, hence it is crucial to confirm

our findings by checking the equations of motion. The only non-trivial Einstein equation

in this pp-wave geometry is,

R++ =
1

4
(H+ijH

ij
+ − 1

12
HijkH

ijk) +
e2φ

4
(F̃+ijF̃

ij
+ − 1

12
F̃ijkF̃

ijk). (3.28)

It is straightforward to verify that both the RHS and LHS of this equation equal the sum

of the masses,
∑

i m2
i = m2

0(
20
9 + γ̄2).

4. The Spectrum

4.1 The boson spectrum

In this section we derive the bosonic part of the world-sheet action in the light-cone gauge

and compute the spectrum of the bosonic string modes. The bosonic action is,

S =

∫

d2σ
√

g
(

gab∂aX
µ∂bX

νGµν + εab∂aX
µ∂bX

νBµν

)

, (4.1)

where Gµν and Bµν are given by equations (3.17) and (3.20).

The symmetries of the action are fixed by the light-cone gauge condition:

gab = diag(−1, 1), X+ = α′p+τ. (4.2)

Inserting this in (4.1) immediately shows that we have 4 massless oscillators, x1, x2, x3

and y1 and two systems of coupled oscillators y2, y3 and z1, z2. The coupling is due to the

non-trivial NS-form. The same coupling arises in the pp-wave constructed from the KS

solution [14]. The coupled systems are easily solved by introducing the mode expansions,

y2 =
∑

n

Ane(iwnτ+nσ), y3 =
∑

n

Bne(iwnτ+nσ), (4.3)

and similarly for z1 and z2. One obtains the following spectrum for y2 and y3

(wy
n)2 =

m2
0

9
+

(

m0γ̄

2
± n

)2

, (4.4)

and for z1 and z2,

(wz
n)2 = m2

0 +

(

m0γ̄

2
± n

)2

, (4.5)

where we introduced the following dimensionless parameter,

m0 = m0α
′p+, (4.6)
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and γ̄ is defined in terms of γ̃ as in (3.18). In addition to (4.4) and (4.5), there are of

course the massless directions x1, x2, x3 and y1 in (3.17) with frequencies

w0
n = n. (4.7)

A number of observations follow from (4.4) and (4.5). First of all, the gamma-deformed

spectrum goes over to the original spectrum of the MN pp-wave [14] in the limit γ̄ → 0.

One also observes that, as in the case of the KS pp-wave, the presence of NS two-form does

not affect the zero frequencies.

4.2 The fermion spectrum

The fermionic part of the world-sheet action in a general pp-wave background is obtained

in [24], [25] (see also [26]) from the Green-Schwarz action in the light-cone gauge,

Γ+θI = 0, (4.8)

where θI , I = 1, 2 are the 16 component Majarona-Weyl spinors of IIB. The fermion action

becomes,

SF =
i

π

∫

dσ2
(

ηαβδIJ − εαβρ3
IJ

)

∂αXµ∂βXν θ̄IΓµDνθ
J . (4.9)

The covariant derivative, D, which also appears in the supersymmetry variation of the

gravitinos is (for constant axion and dilaton and vanishing 5-form),

Dµ = Dµ − e−φ

96
H/µσ3 −

1

96
F̃/µσ1, (4.10)

with

H/µ = HνρσΓνρσ
µ − 9HµνρΓ

νρ (4.11)

and similarly for F̃ .

As first observed in [25], the RR 3-form contributes as a mass term for the fermions

and the NS 3-form couples the two sets of fermionic oscillators via a chiral interaction term.

In our linear pp-wave geometry, the action is still quadratic, thus it is straightforward to

compute the spectrum. One substitutes the expressions for the RR forms in section 3.4

in (4.9) and derives the equations of motion for θI . To solve the system one combines them

as, ε = θ1 + iθ2, and Fourier expands,

ε =
∑

n

εn(τ)einσ. (4.12)

The equation of motion, then takes the following form:

ε̈n =
(

F̃/
2
+ (H/ − in)2 + i[F̃/,H/]

)

εn. (4.13)

Here we defined

H/ = −1

8
p+α′ΓijH+ij, (4.14)

and similarly for F̃ . We first note from eqs. (3.21) and (3.26) that the commutator term

in (4.13) drops. This is in contrast to what happens in the two other similar examples of
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the pp-wave geometries with non-trivial 3-forms that appeared in the AdS/CFT literature,

namely the pp-wave of the KS geometry [14] and the pp-wave obtained in [26]. As a result,

the spectrum is simpler than that of those. The eq. (4.13) becomes,

ε̈n =

{

m2
0

4

(

−10

9
− γ̄2

2
+

(

2

3
− γ̄2

2

)

Γ1234

)

− n2 +
i

2
nm0γ̄

(

Γ12 − Γ34
)

}

εn. (4.15)

Here we denote the z1, z2, y2 and y3 directions in (3.17) as 1,2,3 and 4, respectively.

Solving (4.15) is a standard exercise performed by expanding εn in the eigenbasis of

iΓ12 and iΓ34:

iΓ12| ± ·〉 = ±| ± ·〉, iΓ34| · ±〉 = ±| · ±〉. (4.16)

One obtains the following sets of doubly degenerate frequencies (double degeneracy is

because ε is complex),

(w++
n )2 = (w−−

n )2 =
4

9
m2

0 + n2, (4.17)

(w+−
n )2 =

m2
0

9
+

(

m0γ̄

2
− n

)2

, (4.18)

(w−+
n )2 =

m2
0

9
+

(

m0γ̄

2
+ n

)2

. (4.19)

We note that the fermion spectrum reduces to that of the original MN pp-wave in [14],

when γ̄ is taken to zero. This is an important check on the computation. We also see that

the spectrum is invariant under γ → −γ as it should be. Flipping the sign of γ can be

undone by a trivial redefinition of chiralities and relabeling of the coordinates y2 ↔ y3,

z1 ↔ z2.

We observe that turning on the γ parameter alters the whole spectrum of the original

theory except the massless sector of the boson spectrum in (4.7) and the (++) and (−−)

subsectors of the fermion modes. As these subsectors are independent of γ̄ they correspond

to a “universal” part of the field theory that is left invariant under the alteration of the

UV theory by gamma deformation.

We demonstrate the shift of the spectrum in fig.1. We observe that turning on the

γ̄ parameter, partially removes some degeneracy in the spectrum of the original pp-wave.

Also, and more importantly, the shift in the frequencies are positive on average! This fact

is in accord with the main result of [1], namely the fact that the deformation increases the

masses of the KK modes hence help decoupling them from the pure gauge dynamics. Here

we can see explicitly how the spectrum is shifted. It is interesting to note that the change

in the spectrum is somewhat complicated. For example in the w− branch of fig.1, the lower

modes n < m0γ̄/4 are shifted up, whereas all the modes n > m0γ̄/4 are shifted down. In

the w+ branch, all of the modes, n > 0, are shifted up. For every mode that shifts down

for n > m0γ̄/4 in the w− branch, there is a corresponding mode that shifts up in the w+

branch. However, for n < m0γ̄/4 all of the modes shift up. Roughly, the average effect

of turning γ on is to shift about [m0γ̄/4] of the modes up by an amount proportional to

(m0γ̄)2. Thus, in order to remove more of the modes from the spectrum, one clearly needs

to increase the scale γ̄m0. This shifts the minimum of w− curve in fig.1 toward the right.
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m0

2

m0

2

w2

w2

w2

w2

γ
4

γ
4

m0 0 2
m

(1+ )
2

n

+

−

0

n0 γ

Figure 1: The solid lines show the new spectrum in (4.5) and the dashed line show the old

spectrum for γ = 0. The old spectrum splits into w+ and w
−

branches, hence removing the

degeneracy partially. The arrows indicate the shift in some of the modes as γ is turned on. These

curves illustrates the shifts in the spectra which also takes place in the same way in (4.4) and in

the fermion spectrum.

In the dual field theory, the Penrose limit corresponds to sweeping out all of the states

in the Hilbert space as J → ∞ except the ones that carry finite light-cone momentum and

energy [14]:

P+ =
i

2
∂− =

m0J

R2
=

m0

R2

(

Jψ + Jϕ̃ − 1

3
Jϕ

)

= const, (4.20)

H = i∂+ = E − m0J = const. (4.21)

Here, Jα = −i∂α is the angular momentum in the α direction. In order to derive the relation

between the light-cone momentum and the angular momentum in (4.21), one should recall

the relation of the original MN angles with the angles used here via the change of variables

in (3.6) and (3.7).

Let us now understand the supersymmetry properties of the spectrum. As clearly seen

by comparing the boson and fermion spectra above, the N = 1 supersymmetry of the MNγ

background is broken in the pp-wave limit. The reason is as follows [14]: The charge that

is used to take the Penrose limit, namely the U(1) charge J , does not correspond to an

isometry of the original MN background because the only U(1) symmetries of the original

background are J2 = −i∂ϕ̃ and J1 = −i(∂ϕ − ∂ψ) whereas J = −i∂ϕ̃ + i/3∂ϕ − i∂ψ . This

is a symmetry that only governs the particular sector of the Hilbert space of operators

in the dual field theory, that is isolated by the rescaling, J → ∞. Therefore, it does not

commute with the four supercharges of the MN background: supersymmetry is explicitly

broken. However, J + 2i/3∂ϕ corresponds to a symmetry and we should be able to see

the presence of two fermionic zero modes in the spectrum if one shifts the Hamiltonian by
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H → H + 2/3Jϕ, hence the frequencies by −2m0/3. We indeed obtain four zero modes

from (4.17) by this shift, for n = 0.

Accordingly, one expects that, although the supersymmetry is broken, the spectrum

should obey the supersymmetric mass sum rules [27] that requires equality of the fermion

and boson mass squares in a theory of spontaneously or explicitly broken supersymme-

try (under certain conditions). Indeed, we see that the sum of the fermion frequencies

in (4.17), (4.18) and (4.19) and the boson frequencies in (4.4), (4.5) and (4.7) match order

by order in n:
∑

(wb
n)2 =

∑

(wf
n)2 =

20

9
m2

0 + n2 + m2
0γ̄

2, ∀n. (4.22)

This condition guarantees that the zero-point energy of the corresponding string theory

remains finite [28]. In case of the maximally supersymmetric pp-wave, the zero-point energy

is not only finite but zero.

Finally, let us discuss an interesting limit of our pp-wave geometry. From the spectrum

in (4.4), (4.5), (4.17), (4.18) and (4.19), we see that the spectrum further simplifies in the

limit,

m0 → 0, γ̃ → 0, γ̂ =
γ̃

m0
= const. (4.23)

This can be achieved by taking gsN → ∞ while keeping α′ and p+ constant and rescaling

γ̃ as above. We note that the spectrum explicitly displays supersymmetry in this limit.

Both the boson and fermion frequencies come in two types: the flat oscillators wn = n and

the “twisted-flat” oscillators wn = |n ± α′p+γ̂|. From the metric (3.17), we observe that

this enhancement in susy is accompanied by an enhancement of the transverse isometry to

SO(4) × SO(4). From (3.20), (3.26), we also observe that only the NS two-form is non-

trivial. It is the simplest type of pp-wave geometry with a non-standard spectrum that

involves as continuous shift of the flat space frequencies, but without a mass term [29]. In

our example, we see that the parameter γ of [29] is realized as a dipole deformation in the

field theory.

5. The thermal partition function

The canonical ensemble of strings in the light-cone gauge has been studied in [30, 31].

Investigation of the UV (p+ → ∞) behavior of the thermal partition function of string

theory in flat space leads to the presence of the Hagedorn temperature, TH = 1/4π
√

α′

above of which the theory becomes ill-defined.

The thermal properties of string theory in the maximally supersymmetric pp-wave

background [17] were analyzed in [18] and [32] where a significantly different behavior is

found: The mass parameter in the spectrum wn =
√

n2 + m2, depends on p+ as m = µp+α′,

where µ is the value of the five-form in the geometry. This non-trivial dependence on p+

alters the UV asymptotics of the thermal partition function and results in a change in the

Hagedorn temperature [18][32]. Depending on the value of µ, the Hagedorn temperature

ranges from the flat space value TH = 1/4π
√

α′ for µ = 0 to TH = ∞ for µ = ∞. The

thermal properties is further studied in [33] where it is shown that the free energy of an
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ideal gas of strings in the maximally symmetric pp-wave background stays finite at the

Hagedorn temperature, hence the Hagedorn behavior possibly signals a phase transition.

A similar investigation has been carried out for the pp-wave [14] of the MN background

in [19]. The authors of [19] showed that the thermal behavior of strings in this pp-wave is yet

different from the cases above. As the glueball mass parameter m0 changes the Hagedorn

temperature shifts from TH = 1/4π
√

α′ for m0 = 0 to TH =
√

3/4π
√

α′ for m0 = ∞ [19].

Therefore, one notes that unlike in case of the maximally symmetric pp-wave above, the

Hagedorn temperature is bounded as the mass parameter is taken to infinity.7 In other

words, the density of states in this limit behaves as

ρ(E) = exp(2E/
√

3α′). (5.1)

The numerics can be understood as follows [19]. As the mass parameter m0 increases,

the gravitational potential in the massive transverse directions of the pp-wave becomes

steeper. As a result, the strings can populate the density of states only by their motion

in the four flat directions of the MN pp-wave. This explains the relevant factor of 1/2 in

the exponential of (5.1) with respect to the strings in flat 10D space. The paper [19] also

argues that the Hagedorn behavior signals a phase transition rather than a thermal limit.

In this section, we generalize the computations in [18, 32, 19] of the thermal partition

function for the case of MNγ pp-wave. Our motivation is to analyze the dependence on the

parameter γ. This may give us hints about the universal thermal properties of the N = 1

SYM theory in a particular limit that corresponds to the Penrose limit.

We closely follow the notation of [18], however we use canonical methods to compute

the partition function rather than the path integral methods in [18]. The finite temperature

single-string partition function in the light-cone gauge is [30][19],

Z = tr e−βP 0
= tr e−β(P++P−) =

∫ ∞

0
dp+

∫ 1/2

−1/2
dλ e−βp+

tr e
− β

p+ H+2πiλ(NL−NR)
. (5.2)

Here H is the light-cone Hamiltonian and λ is a Lagrange multiplier that enforces the level

matching condition between the left and right moving excitations of the string. To avoid

cluttering in formulas, below we call the transverse directions y1 as 4, y2, y3 as 5, 6 and

z1, z2 as 7 and 8. The light-cone Hamiltonian is,

H =
~P 2
x

2p+
+

P 2
4

2p+
+

1

α′p+

∞
∑

n=1

w0
n

(

3
∑

i=1

N i
n + N4

n

)

+
1

α′p+

∞
∑

n=0

(

wy
n(N5

n + N6
n) + wz

n(N7
n + N8

n)
)

+

∞
∑

n=0

(

w++
n

4
∑

i=1

Si
n + w+−

n (S5
n + N6

n) + w−+
n (S7

n + N8
n)

)

+ H0. (5.3)

The frequencies are given by the equations (4.7), (4.4), (4.5), (4.17), (4.18) and (4.19).

Nn = N l
n + N r

n is the total number of left and right bosonic excitations and Sn = Sn + S̃n

is the number of the chiral and anti-chiral fermionic excitations with mode number n. H0

7See however [28, 34].
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is the total zero-point energy in the system:

H0 = 4∆b[0, 0] + 2∆b

[

m0,
m0γ̄

2

]

+ 2∆b

[

m0

3
,
m0γ̄

2

]

+ 4∆f

[

2m0

3
, 0

]

+ 4∆f

[

m0

3
,
m0γ̄

2

]

,

(5.4)

with ∆b[m,α] defined as the Casimir energy of a massive complex boson of mass m that

satisfies a twisted boundary condition on the cylinder [35], φ(τ, σ + π) = e2πiαφ(τ, σ):

∆b[m,α] =

∞
∑

n=1

′
√

(n ± α)2 + m2. (5.5)

Similarly, ∆f [m,α] is the Casimir energy of a twisted complex fermion of mass m:

∆f [m,α] =

∞
∑

n=1

′
√

(

n − 1

2
± α

)2

+ m2. (5.6)

The primes denote a proper regularization of the sums which we give the precise definitions

in the appendix C. We note the following relation between the bosonic and fermionic zero-

point energies:

∆f [m,α] =
1

2
∆b[2m, 2α] − ∆b[m,α], (5.7)

which is simply derived by dividing the sum in (5.6) into odd and even parts.

In order to demonstrate the modular properties of (5.2) it is useful to introduce the

parameter,

τ = τ1 + iτ2 ≡ λ + i
β

2πα′p+
, (5.8)

in terms of which (5.2) becomes,

Z = − β

2πα′

∫

d2τ

τ2
2

e
−β2

2πα′τ2 Z(τ) (5.9)

where Z(τ) is the trace in (5.2). The τ integration is over the infinite strip τ2 ≥ 0,

1/2 > τ1 > −1/2.

The use of the Lagrange multiplier λ in (5.2) decouples the contributions from the

excitations in different transverse directions. As usual, the fermionic and bosonic contri-

butions can also be computed separately. Therefore the trace Z can simply be evaluated

as in the following product form:

Z(τ) = |q|H0+
1
3

(

|η(τ)|−2

τ
1/2
2

)4
∏

n∈Z

∣

∣

∣
1 + e−2πτ2w++

n +2πinτ1
∣

∣

∣

4 ∣

∣

∣
1 + e−2πτ2w+−

n +2πinτ1
∣

∣

∣

4

∣

∣1 − e−2πτ2wy
n+2πinτ1

∣

∣

2 |1 − e−2πτ2wz
n+2πinτ1 |2

. (5.10)

The various contributions in this expression need explanation. The second piece that

involves the Dedekind eta function is the standard torus partition function of bosonic

string excitations in four flat directions. The eta function,

η(τ) = q
1
24

∞
∏

n=1

(1 − qn), (5.11)
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includes the sum over excitations of frequency modes n ≥ 1 and the zero-point energy,

∆b[0, 0] = −1/12. The τ
1/2
2 term comes from the Gaussian integration over the center of

mass momentum in the flat directions. The exponential piece in front of (5.10) arises from

the zero-point energy of the system on the cylinder. H0 is defined in (5.4). We subtracted

the piece that comes from the flat directions because they are already included in the

definition of the η function. The numerator of the big product includes contributions from

all of the fermionic excitations of mode n ≥ 0 and finally the denominator of the product

involves contributions of bosonic string excitations along the massive directions 5,6,7 and

8. We remark that the mode n = 0 in the massive directions corresponds to the oscillatory

motion of the center of mass of the string in the gravitational potential well along these

massive transverse directions. We also note that (5.10) reduces to the partition function

that is computed in [19] in the limit γ̄ → 0, as it should.

6. The UV asymptotics

The thermal partition function of a single-string in our pp-wave background is given by

the eqs. (5.9) and (5.10). In this section, we study the UV asymptotics of the partition

function. The UV regime corresponds to p+ → ∞ hence τ2 → 0 by (5.8). It is easy to

see that the only possible divergence of Z(τ) (5.10) in this limit, is at τ1 = 0. Thus, in

the following we set τ1 = 0 and study the limit τ2 → 0 in order to derive the Hagedorn

temperature above of which (5.9) becomes ill-defined.

As the products in (5.10) diverge in this limit, one should utilize the modular trans-

formation properties of the various pieces in Z(τ). The modular S-transformation of the

eta function is given by,

η (iτ2) = τ
− 1

2
2 η(iτ−1

2 ). (6.1)

The infinite products in (5.10) cannot be directly expressed in terms of well-known modular

functions, hence their behavior under the S-transformation is less clear. Luckily, for τ1 = 0,

they can be expressed in terms of the generalized modular functions first introduced in [36]

and further generalized by Takayanagi in [35]. Takayanagi defines the following generalized

Dedekind function,

Z
(m)
δ,α (τ) = e4πτ2∆b[m,α]

∏

n∈Z

∣

∣

∣
1 − e−2πτ2

√
m2+(n+α)2+2πiτ1(n+α)+2πiδ

∣

∣

∣

2
. (6.2)

This function has nice transformation properties under the modular transformations. Its

behavior under the S-transformation is derived by Poisson re-summation in [35] and it is

shown that,

Z
(m)
δ,α (τ) = Z

(m|τ |)
α,−δ

(

−1

τ

)

. (6.3)

It is not hard to see that, for τ1 = 0, the denominator of (5.10) together with the

corresponding zero point energy terms in the exponential can directly be expressed in terms

of (6.2). The same is true for the numerator as well if one uses (1+ex) = (1−e2x)/(1−ex).
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Using also the relation (5.7), all in all one obtains,

Z(iτ2) =
|q|2(∆b[

4m0
3

,0]+∆b[
2m0

3
,2α])Z

(2m0/3)
0,0 (2iτ2)

2
Z

(m0/3)
0,α (2iτ2)

2

τ2
2 |η(iτ2)|8Z(m0)

0,α (iτ2)Z
(m0/3)
0,α (iτ2)

3
Z

(2m0/3)
0,0 (iτ2)

2 , (6.4)

where α = m0γ̄/2. Now it is a simple exercise to work out the UV asymptotics of (6.4) if one

uses the asymptotics of the Dedekind and generalized Dedekind functions as τ2 → 0. These

can easily be found by employing the modular transformation properties (6.1) and (6.3).

Thus as τ2 → 0 one obtains,

η(iτ2) → τ
− 1

2
2 e

− 2π
τ2

1
24 , Z

(m)
δ,α (iτ2) → e

4π
τ2

∆b[mτ2,−δ]
. (6.5)

Substituting these asypmtotics in (5.9) we find that, for temperatures larger than a βH the

thermal partition diverges and the Hagedorn temperature is determined by the following

formula:

−
(

βH

2π
√

α′

)2

−2∆b

[

m0βH

2π
, 0

]

−2∆b

[

m0βH

6π
, 0

]

+4∆f

[

m0βH

3π
, 0

]

+4∆f

[

m0βH

6π
, 0

]

+
1

3
=0 .

(6.6)

In the derivation, we further used the relation (5.7) and m0τ2 = m0β/2π. In fact the

precise value of TH depends on the way one approaches the singular τ = 0 [32]. This fact

shows up as dependence of TH on the fixed ratio θ = τ1/τ2. However, the minimum of TH

as a function of this ratio is at θ = 0, which coincides with 6.6. Therefore, 6.6 defines the

absolute temperature that signals an irregular behavior in the thermal partition function.

In either case, TH stays unaltered under the γ-deformation.

Another important subtlety in the expression (6.6) is the question that concerns the

regularization of the Casimir energies. As pointed out in [28], in fact, the sum over the

Casimir energies that appear in (6.6) is finite without regularization, due to the underlying

supersymmetry in the theory. Therefore [28] argues that regularizing separate Casimir

energies as in the appendix C unnecessarily subtracts a finite term from this expression.

Using that prescription, one instead obtains (6.6) where the sum over the regularized

Casimir energies, E′
0, is replaced by the unregulated sum E0 = E′

0 + δ0. For our geometry,

the difference is δ0 = (32/9 log(2)−4 log(3))m2
0. This additional term, alters the Hagedorn

behavior in the limit m0 → ∞. For our purposes in this paper, it suffices to note that, this

modification does not alter our conclusion: TH stays unaltered under the γ-deformation.8

It is quite surprising that we obtained exactly the same Hagedorn temperature as the

one for the pp-wave of the original MN background [19]. We note that the parameter

γ̄ enters the spectra in a non-trivial way, therefore the thermal partition function in the

MNγ pp-wave depends on γ̄ non-trivially. It is easy to trace back the mathematical reason

for the unexpected independence of TH on γ̄: For τ1 = 0, the dependence of Z(τ) on γ̄

8We used the regularized sum in appendix C in order to use the nice modular properties of the func-

tion (6.2). Shifting H0 by δ0 in (5.10) gives the result with E0 above, without the need to alter our

discussion on the modular properties of the various functions above. We thank A. Cotrone and F. Bigazzi

for communication on these issues.
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is confined in the coefficient α in (6.4) that only appears inside the generalized Dedekind

functions and the exponential in front. As under the S-transformation (6.3), the coefficients

δ and α are interchanged, the UV asymptotic of the generalized Dedekind function becomes

independent of γ̄. Similarly the dependence on α in the exponential in (6.4) disappears as

τ2 → 0, i.e. q → 1. However, the dependence on γ̄ is manifest in other regions of the moduli

space τ . Apparently, the independence of the parameter α of the UV asymptotics of (6.2)

was first noticed in [32], in a similar computation concerning the maximally symmetric

pp-wave background. In that paper, this parameter had no physical significance but kept

just as a dummy index in the functions, in order to study their modular transformations.

In the maximally symmetric background, it does not appear in the energy spectrum of the

string excitations.

In order to understand the nature of the Hagedorn temperature, one needs to look at

the free-energy of an ideal gas of strings in this background as in [19][33]. Although we did

not carry out this computation (because our main focus of discussion is rather different

in this paper), the fact that the dependence on γ only enters as n → n + γ we strongly

believe that the free-energy stays finite at TH also in our case. Therefore it is reasonable

to conjecture that the Hagedorn behavior signals a phase transition also in the γ deformed

background.

7. Discussion and outlook

In this paper, we investigated the idea that a quantity that is independent of the defor-

mation parameter γ in the MNγ background is likely to give reliable information on the

N = 1 SYM in the IR. One obvious loophole is that, perhaps there exist quantities which

are independent of the deformation not because they do not receive contributions from the

KK-sector but because their dependence on the dipole deformation vanishes either because

of some symmetry reasons or in some particular limits that render the effects of the dipole

deformation negligible. It is quite important to make this point as rigorous as possible.

Indeed, our construction in this paper illustrates this possibility. Although the pp-wave

that we constructed is conjectured to describe the dynamics of KK-hadrons, there exist

quantities in the thermal domain that do not exhibit dependence on the dipole parameter

γ. Thus, our example makes it clear that independence of a field theory quantity of the

deformation is only a necessary but not sufficient condition for the universality. However

we beleive that one can argue for true universality by supplying this necessary condition

with additional arguments. For example, we beleive that certain quantities computed in [1]

fall into this class.

As an illustration of a quantity that is independent of γ, we computed the Hagedorn

temperature of the strings in a pp-wave that is obtained from the MNγ background of [1].

The fact that the Hagedorn temperature is independent of the deformation parameter may

give us hints about the universal properties of the MN background that are independent

of the KK sector, hence may be directly relevant for the IR dynamics of pure N = 1 SYM.

A naive point of view would be to claim that the Hagedorn temperature given by (6.6)

is a fully universal quantity of pure N = 1 SYM . We rather attribute this fact to the
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certain Penrose limit that we take in order to define this quantity: in the limit J → ∞,

which corresponds to scaling the Hilbert space of operators in the field theory as in the

BMN theory [37], and in the UV regime p+ → ∞, most probably the quantity that we

define has no universal meaning for N = 1 SYM . Although the KK-modes give the main

contribution to the Hagedorn density of states, dependence of the Hagedorn temperature

on γ̄ gets diluted in the UV and disappears. Even if this is the true explanation, the fact

that the UV asymptotics of strings in different pp-wave backgrounds are exactly the same

is an interesting phenomenon in its own right and deserves better understanding.

One may still hope to entertain an optimistic view, by proposing the following expla-

nation for the independence of the Hagedorn temperature of the dipole moments in the

KK sector. One may argue for the claim that TH is a universal quantity of SYM in the

large R-charge limit as follows: We recall that the current used in the Penrose limit is

J = −i∂ψ − i∂ϕ̃ + i/3∂ϕ. As the gluinos of N = 1 SYM are charged under i∂ψ, one may

be able to build very massive gauge-invariant states of large charge J out of gluini and

glue and these states would also survive the limit. The Hagedorn density may be receiving

the main contribution from these states. However, this possibility is easy to rule out. We

recall that one can in fact choose the null geodesic for the pp-wave such that J is in the

diagonal of the two U(1) groups under which only the KK-states are charged. This leaves

some terms of the form dx+dφ etc. in the metric, hence computation of the spectrum is

harder. However, at the end this amounts to shifting the whole spectrum by a constant

term proportional to m0 [14]. Running our computation for the Hagedorn temperature

again with the new spectrum, one still observes independence of the deformation parame-

ter γ̄ (although the expresssion for TH depends on which geodesic we use for the Penrose

limit, hence is different than (6.6)). Therefore Hagedorn density of states should not be

receiving contributions from the pure SYM states.

There are several other directions that one would like to explore. It would be very

interesting to obtain examples of true “universal” quantities from the MNγ background

which preferably admit an easier interpretation from the field theory point of view. For

a quantity Q that is independent of γ, one can argue for the universality as follows. One

would like to say that in the limit γ̄ → ∞, Q stays the same but the remnants of the

KK-sector is swept out of the spectrum. This is not quite true because as seen from the

figure 1, whatever the value of γ̄ is, the region of the KK-spectra near the minimum of

the w− branch never really decouples. However, in this limit the contribution from this

region carry extremely high excitation number n. Thus, if one constructs Q such that it

receives contributions mainly from the lowest lying excitations, then one can argue that

this quantity carries reliable information on the pure SYM. Here the excitation number

n should be dual to a quantum number carried by the glueballs in the large N limit.

The Hagedorn temperature is not of this type because in the torus partition function, the

contribution from the lowest and highest modes are all mixed up through the modular

transformation properties.

Secondly, one may apply our methods to the case of the pp-wave that is obtained

from the KS background in [14]. We expect that the γ deformed KS background [6] also

admits a pp-wave similar to ours, and that TH is again independent of γ. This should be
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straightforward to work out, albeit technically more involved than our case. As the field

theory that corresponds to the KS pp-wave is better understood [14], this exercise would

help clarifying our discussion above. It should also be very interesting to carry out a similar

analysis in the backgrounds that are dual to the γ deformation of the N = 1 theories with

flavors [38].

Another interesting direction would be to study the BMN type states dual to the pp-

wave in question. A similar study was done in [16]. The BMN states should involve non-

trivial dependence on the parameter γ. The way that this dependence arises is suggested

by the fact that our pp-wave spectrum is the spectrum of fields with twisted b.c. on the

cylinder, i.e. φ(σ + π) = e2πiγφ(σ) (see [12] for a discussion on this point). A similar one-

parameter generalization of the BMN states is found in [39]. After construction of these

states, it will be interesting to study, for example, their supersymmetry properties [40], [41].

A question that is independent of the above concerns is the stringy corrections to the

MNγ background. We believe that our pp-wave solution is an exact solution to string

theory including the α′ corrections by the argument of [42], [43]. However gs corrections

are much harder to study than the case of the flat space or the maximally symmetric pp-

wave of [17]. In the latter cases the gs corrections to the light-cone Hamiltonian follow from

symmetry restrictions [44], [45] that are less restrictive here. Apart from this discussion,

the fact that γ is directly proportional to the value of the axion in the pp-wave geometry

may give us a hint about the stringy corrections to the MNγ background: perhaps these

corrections should promote the parameter γ to a dynamical variable.

One can also ask whether or not our pp-wave geometry can directly be obtained as a

deformation of the MN pp-wave [14].9 The SL(3, R) transformations used in this paper

when directly applied to a pp-wave geometry generally does not result in another pp-wave

geometry. However, a class of deformations of a pp-wave that again give rise to pp-waves

are discussed e.g. in [46]. It would be quite interesting to explore this point further.

Finally, we would like to point out an interesting application of our results to the

β-deformed N = 4 SYM theory. In [6], a pp-wave geometry is constructed from the

gravity dual of this field theory. By comparison of the spectra of that pp-wave to the

pp-wave considered here, one realizes that our arguments about the independence of TH

of the deformation parameter possibly holds for that case as well. This fact has immediate

consequences for the thermal properties of the corresponding field theory. It implies that,

in the limit of large R-charge two different field theories, a superconformal N = 1 SYM

theory and the N = 4 SYM theory has exactly the same Hagedorn behavior. It should be

interesting to pursue this observation further in the light of [47].
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A. Details of the background

In this appendix, we present some details of the MNγ background. For completeness let us

first give expressions for the quantities that appear in the MN background. The one-forms

that define the fibration of the S2 on the S3 in (2.2) are,

A1 = −a(r)dθ , A2 = a(r) sin θdϕ , A3 = − cos θdϕ , (A.1)

and the the left invariant SU(2) one-forms are given by,

w1 = cos ψdθ̃ + sin ψ sin θ̃dϕ̃ ,

w2 = − sinψdθ̃ + cos ψ sin θ̃dϕ̃ ,

w3 = dψ + cos θ̃dϕ̃ . (A.2)

Ranges of the three angles are 0 ≤ ϕ̃ < 2π, 0 ≤ θ̃ ≤ π and 0 ≤ ψ < 4π. Various functions

that appear in (2.2) and the dilaton of the MN geometry is given by,

a(r) =
2r

sinh 2r
,

e2h = r coth 2r − r2

sinh2 2r
− 1

4
,

e−2φ = e−2φ0
2eh

sinh 2r
, (A.3)

The background includes an RR two-form C
(2)
0 , that is given by

C
(2)
0 =

1

4m2
0

[

ψ ( sin θdθ ∧ dϕ − sin θ̃dθ̃ ∧ dϕ̃ ) − cos θ cos θ̃dϕ ∧ dϕ̃ −

−a ( dθ ∧ w1 − sin θdϕ ∧ w2 )
]

. (A.4)

This concludes the definitions concerning the MN geometry.

The angular part of the MNγ metric in (2.3) reads,

dΩ2
5 = D1 dθ2 + D2 dθ̃2 + D3 dψ2 + D4 dϕ2 + D5 dϕ̃2 + E1 dθ dθ̃ + E2 dθ dψ (A.5)

+E3 dθ̃ dψ + E4 dθ dϕ̃ + E5 dθ̃ dϕ + E6 dψ dϕ + E7 dψ dϕ̃ + E8 dϕdϕ̃,

where,

F =
eφ

4m2
0

√

f − g2, D1 = fa2 sin2 ψ sin2 θ̃,

D2 = a2 sin2 θ sin2 ψ, D3 = f cos2 θ̃ + cos2 θ + 2g cos θ cos θ̃,

E1 = 2a2 g sin2 ψ sin θ sin θ̃, E2 = 2a sin ψ sin θ̃(f cos θ̃ + g cos θ),
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E3 = 2a sin ψ sin θ(cos θ + g cos θ̃), D4 = f(f − g2), D5 = f − g2, (A.6)

E4 = 2a sin ψ sin θ̃(f − g2), E5 = 2a sin ψ sin θ(f − g2),

E6 = 2cos θ(f − g2), E7 = 2cos θ̃(f − g2), E8 = 2f(f − g2),

f = 4e2h sin2 θ + cos2 θ + a2 sin2 θ, g = a sin θ sin θ̃ cos ψ − cos θ cos θ̃.

The one-forms that appear in the RR-forms and the NS-form of MNγ in eqs. (2.5), etc

are,

A1 = (f − g2)−1

{

(a sin θ̃ sin ψg)dθ + (a sin θ sin ψ)dθ̃ + (cos θ + g cos θ̃)dψ

}

. (A.7)

and

A2 = (f − g2)−1

{

f(a sin ψ sin θ̃)dθ + ga(sin ψ sin θ)dθ̃ + (f cos θ̃ + g cos θ)dψ

}

. (A.8)

All of these expressions involve many simplifications with respect to the form that was

originally presented in [1].

B. The coordinate transformation

The coordinate transformation (3.6) of section 3.1 is,

e
i
2
(ψ+ϕ) cos

θ

2
= e

i
2
(ψ+ϕ̃−ϕ) cos

θ

2
cos

θ̃

2
+ e−

i
2
(ψ−ϕ̃−ϕ) sin

θ

2
sin

θ̃

2
,

e
i
2
(ψ−ϕ) sin

θ

2
= e

i
2
(ψ−ϕ̃−ϕ) cos

θ

2
sin

θ̃

2
− e−

i
2
(ψ+ϕ̃−ϕ) sin

θ

2
cos

θ̃

2
. (B.1)

There are three linearly independent equations contained in (B.1). We also need the

expansion of these coordinate transformations in the first few powers in R:

cos θ = cos θ +
θ̃

R
sin θ cos(ψ − ϕ) − θ̃2

2R2
cos θ + O(1/R3),

sin θ = = sin θ − θ̃

R
cos θ cos(ψ − ϕ) +

θ̃2

4R2

cos 2θ − cos 2(ψ − ϕ)

sin θ
+ O(1/R3),

cos ψ = −1 +
θ̃2

2R2

sin2(ψ − ϕ)

sin2 θ
+ O(1/R3), (B.2)

sin ψ =
θ̃

R

sin(ψ − ϕ)

sin θ
+ O(1/R3).

For the Penrose limit of the various n-forms in the geometry, in fact, one needs more than

the first terms of the line elements in (3.15):

dθ = dθ − 1

R

(

dθ̃ cos(ψ − ϕ) − θ̃ sin(ψ − ϕ)(dψ − dϕ)
)

+ O(1/R2), (B.3)

dψ =− 1

R sin θ

(

dθ̃ sin(ψ − ϕ) + θ̃ cos(ψ − ϕ)(dψ − dϕ)−θ̃ cot θ sin(ψ − ϕ)dθ
)

+ O(1/R2).
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C. The regularized Casimir energies

The regularization of the Casimir energies in (5.5) and (5.6) are discussed in [18] and [35]

and most extensively in [28]. Throughout the paper we use the definition,

∞
∑

n=1

′
√

(n + a)2 + m2 = − 1

2π2

∞
∑

p=1

∫ ∞

0
dse−p2s−π2m2

s cos(2πpa). (C.1)

The fermionic sum can similarly be defined by making the substitution a → a−1/2 above.
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